Optimization of in vivo confocal autofluorescence imaging of the ocular fundus in mice and its application to models of human retinal degeneration.

نویسندگان

  • Peter Charbel Issa
  • Mandeep S Singh
  • Daniel M Lipinski
  • Ngaihang V Chong
  • François C Delori
  • Alun R Barnard
  • Robert E MacLaren
چکیده

PURPOSE To investigate the feasibility and to identify sources of experimental variability of quantitative and qualitative fundus autofluorescence (AF) assessment in mice. METHODS Blue (488 nm) and near-infrared (790 nm) fundus AF imaging was performed in various mouse strains and disease models (129S2, C57Bl/6, Abca4(-/-), C3H-Pde6b(rd1/rd1), Rho(-/-), and BALB/c mice) using a commercially available scanning laser ophthalmoscope. Gray-level analysis was used to explore factors influencing fundus AF measurements. RESULTS A contact lens avoided cataract development and resulted in consistent fundus AF recordings. Fundus illumination and magnification were sensitive to changes of the camera position. Standardized adjustment of the recorded confocal plane and consideration of the pupil area allowed reproducible recording of fundus AF from the retinal pigment epithelium with an intersession coefficient of repeatability of ±22%. Photopigment bleaching occurred during the first 1.5 seconds of exposure to 488 nm blue light (∼10 mW/cm(2)), resulting in an increase of fundus AF. In addition, there was a slight decrease in fundus AF during prolonged blue light exposure. Fundus AF at 488 nm was low in animals with an absence of a normal visual cycle, and high in BALB/c and Abca4(-/-) mice. Degenerative alterations in Pde6b(rd1/rd1) and Rho(-/-) were reminiscent of findings in human retinal disease. CONCLUSIONS Investigation of retinal phenotypes in mice is possible in vivo using standardized fundus AF imaging. Correlation with postmortem analysis is likely to lead to further understanding of human disease phenotypes and of retinal degenerations in general. Fundus AF imaging may be useful as an outcome measure in preclinical trials, such as for monitoring effects aimed at lowering lipofuscin accumulation in the retinal pigment epithelium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical applications of fundus autofluorescence in retinal disease

Fundus autofluorescence (FAF) is a non-invasive retinal imaging modality used in clinical practice to provide a density map of lipofuscin, the predominant ocular fluorophore, in the retinal pigment epithelium. Multiple commercially available imaging systems, including the fundus camera, the confocal scanning laser ophthalmoscope, and the ultra-widefield imaging device, are available to the clin...

متن کامل

Subretinal injection of amyloid-β peptide accelerates RPE cell senescence and retinal degeneration.

Drusen are considered a hallmark characteristic of age-related macular degeneration (AMD). In our previous study, we found that amyloid-β (Aβ) peptide, a component of drusen, induced the cells of the retinal pigment epithelium (RPE; RPE cells) to enter senescence; however, its effects in vivo remain unknown. Thus, the present study was carried out to explore the in vivo effects of Aβ peptide on...

متن کامل

In vivo imaging of retinal pigment epithelium cells in age related macular degeneration.

Morgan and colleagues demonstrated that the RPE cell mosaic can be resolved in the living human eye non-invasively by imaging the short-wavelength autofluorescence using an adaptive optics (AO) ophthalmoscope. This method, based on the assumption that all subjects have the same longitudinal chromatic aberration (LCA) correction, has proved difficult to use in diseased eyes, and in particular th...

متن کامل

Drusen Imaging: A Review

Drusen represent the hallmark of non-exudative age-related macular degeneration (AMD). Drusen vary in their location within the retina, ranging from sub-retinal pigment epithelium (RPE) drusen and sub-neurosensory retinal drusenoid deposits above the RPE (or pseudo-drusen). In this paper, we review the rapidly advancing imaging techniques currently available to better correlate drusen volume to...

متن کامل

Variations of the Normal Human Limbal Stem Cells Detected by In Vivo Confocal Microscopy

Background  To report normal variations of the limbal structures using in vivo laser scanning confocal microscopy. Methods: This was a retrospective study of fourteen eyes from 11 healthy individuals. Confocal imaging of cornea and limbus was performed using Heidelberg Retina Tomograph III Rostock Corneal Module. Results: The typical structure of the palisades of Vogt (POV) was detected ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 53 2  شماره 

صفحات  -

تاریخ انتشار 2012